Some slides contains animated elements that are not available in the PDF format

iClass Key Extraction – Exploiting th

Authors Suppressed Due to Excessive Length

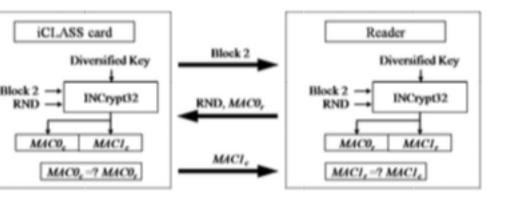
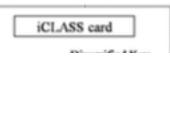



Fig. 1. Authentication protocol

te MAC. At this point, ay. If MAC0_r is correct. c) that enables the reader ation protocol needs to perf data.

Protocol If the authentic ta blocks without an addi n 8-byte data in a data me. The write protocol i

Ir	Circuit Serial Prog	ramming (ICSP) Command S
CSP Data/	18F452 PIC	Comment
PIC Instr.	Assembly Code	
x0E00	MOVIN, 0	Set Upper byte of Index J
x6 EEA	MOVWF, FSR0H	
x0 E0 0	MOVIN, 0	Set Lower byte of Index /
x6 EE9	MOVWF, FSR0L	
x50EE	MOVF, POSTINCO	Read File Register & Inc:
x6 EF5	MOVWF, TABLAT	Move Reg data to ICSP Reg
leg Data	N/A	Send data byte read to IC

apture Circuit Implementation

required to extract the iClass register information is fairly it is comprised of a generic 8-bit microcontroller which is i RS-232 transceiver, a couple of push buttons and a couple :SP interface and a PC serial COM port. The microcontrolle

Breaking the HID iCLASS Standard

By Michael Cahyadi

iCLASS Compatibilit

	-				
	Card Compatibility	R10, R30, R40, RK40	RW300, RW400, RWK400, RWKL550, RWKB575	FIPS 201	R10A Transit
	Card CSN Read	2K & 16K	2K & 16K	Infineon MyD [™] , TI Tag-It, Philips I Code®	Infineon MyD [™] , TI Tag-It, Philips I Code®
ISO 15693	Card Read	2K & 16K	2K & 16K	2K & 16K	2K & 16K
	Card Write	NONE	2K & 16K	2K & 16K	NONE
	Card CSN Read	Philips MIFARE, UltraLight, DESFire™	Philips MIFARE, UltraLight, DESFire™	NONE	NONE
ISO 14443A	Card Read	NONE	NONE	DESFire™	NONE
	Card Write	NONE	NONE	DESFire™	NONE

s Employing Mutual Authentication

establish ed l, cloned,

NXP Semiconductor

2 Key Diversific

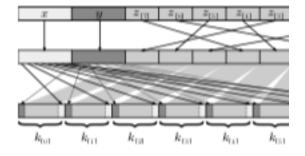


Fig. 2.5. Schematic representation of the

Remark 3. The DES implementation used in iClas NIST standard [12] in the way of representing keys. DES key is of the form $\langle k_0 \dots k_6 p_0, k_7 \dots k_{13} p_1, \dots, k_{13} p_{13} \rangle$ are the actual key bits and $p_0 \dots p_7$ are parity bits. I is of the form $(k_0 \dots k_{55}p_0 \dots p_7)$.

The following sequence of definitions describe the fu

Originally published in 2019 **Translated from indonesian to English**

2.1 Construction

For diversification, the recommended way by NXP is to use the CMAC construction of an amount of data using a master key. See [CMAC].

The pre-requisite is that there is enough input "diversification data" in order to make it a MAC. A MAC is used rather than encryption to make it a one-way function.

How a Credential is 'Read

The result $k_1^{\oplus} = 78$ comes from a modulo operation. Here input z6 is taken modulo 62, which is 111110 in binary. Example for $k_1^{\oplus} = 0x78$:

> $z_6 = 111100$, $(z_6 \mod 62) + 2 = .111110$. $z'_6 = 111110$, $(z'_6 \mod 62) + 2 = .000010$. \oplus $01111000 = 0 \times 78$

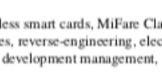
Then, 3 % of the output variations invoked by bitflips in $z_{6|1|}$ describe a relation $z_6 + 1 = z_7$. The corresponding k_1^{\oplus} is obtained by taking $k_{1[1..6]} = 1$ when the relation holds and $k_{1[1..6]} = (z_6 \mod 62) + 2$ when it does not hold. Example for $k_1^{\oplus} = 0x4e$:

$z_6 = 1.00100$, $(z_6 \mod 62) + 2$	-	.100110.
$z'_6 = 100110$, $((z'_6 \mod 62) + 1 = n_7)$	-	.000001. ⊕
		01001110 = 0x4e

Eventually, the function for $k_{1|1..6|}$ is:

$$k_{1[1..6]} = \begin{cases} 1, & (z_6 \mod 62) + 1 = (z_7 \mod 63); \\ (z_6 \mod 62) + 2, & otherwise \end{cases}$$

	bit	
($\oplus \rightarrow$	k_0k_1
(48	fc000
	49	00fc0
	50	20000
J	51	00000
η	52	00000
	53	00000
	54	00000
l	55	00000
(56	71717
	57	00007
	58	7f7e7
J	59	7f7e7
٦Ì	60	00007
	61	7f7e7
	62	7f7e7
1	63	7f7e7
Fig	gure	9: OR :


01234567, 3567012 34670125, 0135246 Access control, RFID, contactless smart cards, MiFare Cla secrets, secure hardware devices, reverse-engineering, elecbackdoors, critical application development management,

Keywords:

Abstract:

MiFare Classic is the most popular contactless smart card wide. At Esorics 2008 Dutch researchers showed that th little as 0.1 seconds if the attacker can access or eavesdrop We discovered that a MiFare classic card can be cloned i the attacker only needs to be in the proximity of the card for of identity through pass cloning feasible at any moment a sitting next to the victim on a train or on a plane is now b also (independently from us) discovered this vulnerability queries to the card and does not require any precomputati or clones of MiFare Classic are even weaker, and can be c The main security vulnerability that we need to address w phy, RFID protocols and software vulnerabilities. It is a s economy is vulnerable to sophisticated forms of electronic oper can intentionally (or not), but quite easily in fact, co

Nicolas T. Courtoi

idon, Computer Science, Gower

Everything done in this presentation is done for educational purposes only

Information regarding classified proprietary information owned by HID will be redacted

RFID Security (1st Edition) ISBN 1-59749-047-4 Syngress, 2005

RFID is

Radio Frequency IDentification

RFID Security (1st Edition) ISBN 1-59749-047-4 Syngress, 2005

Radio Frequency IDentification is used in

E-Pasports

ALAMAT / ADDRESS

NO.TELP / PHONE NO.

RI

ALAMAT DI LUAR NEGERI / OVERSEAS ADDRESS

PEMEGANG AGAR MENCANTUMKAN IDENTITAS ORANG YANG DAPAT DIHUBUNGI / THE BEARER SHOULD INSERT BELOW PARTICULARS OF PERSON WHO MAYBE CONTACTED :

NAMA / NAME

ALAMAT / ADDRESS

NO.TELP / PHONE NO. HUBUNGAN / RELATIONSHIP :

> Tanda Tangan Pemegang Signature of Bearer

Peringatan

-0-

Warning

Paspor ini dilengkapi dengan cip elektronik yang sensitif. Paspor ini tidak boleh ditekuk, dilipat, dilubangi, dicelupkan dalam cairan, atau dibanting. Paspor ini juga tidak boleh ditaruh di tempat yang sangat panas atau lembab, di tempat yang langsung terkena cahaya matahari, di sekitar area elektromagnetik seperti televisi, microwave, atau terkena bahan-bahan kimia.

This passport contains a sensitive electronic chip. The passport, must not be bent, folded, perforated, immersed in liquid or dropped. Neither should it be subjected to extreme heat or humidity, placed in direct sunlight or near electromagnetic field such as television sets or microwave ovens, or come into contact with chemical substances.



RFID Security (1st Edition) ISBN 1-59749-047-4 Syngress, 2005

Radio Frequency IDentification is used in

E-Pasports

ALAMAT / ADDRESS

NO.TELP / PHONE NO.

R

ALAMAT DI LUAR NEGERI / OVERSEAS ADDRESS

PEMEGANG AGAR MENCANTUMKAN IDENTITAS ORANG YANG DAPAT DIHUBUNGI / THE BEARER SHOULD INSERT BELOW PARTICULARS OF PERSON WHO MAYBE CONTACTED :

NAMA / NAME

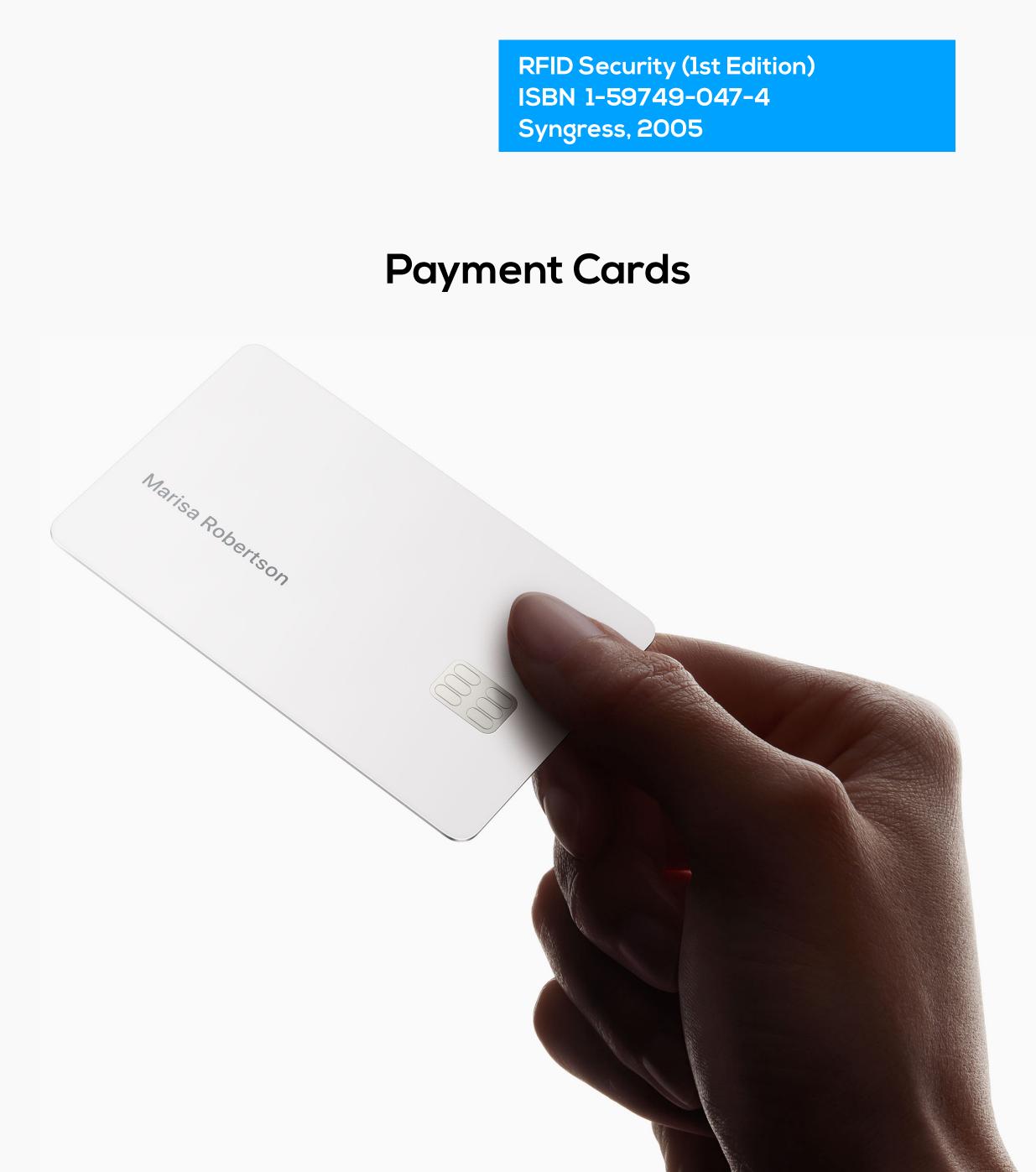
ALAMAT / ADDRESS

NO.TELP / PHONE NO. HUBUNGAN / RELATIONSHIP

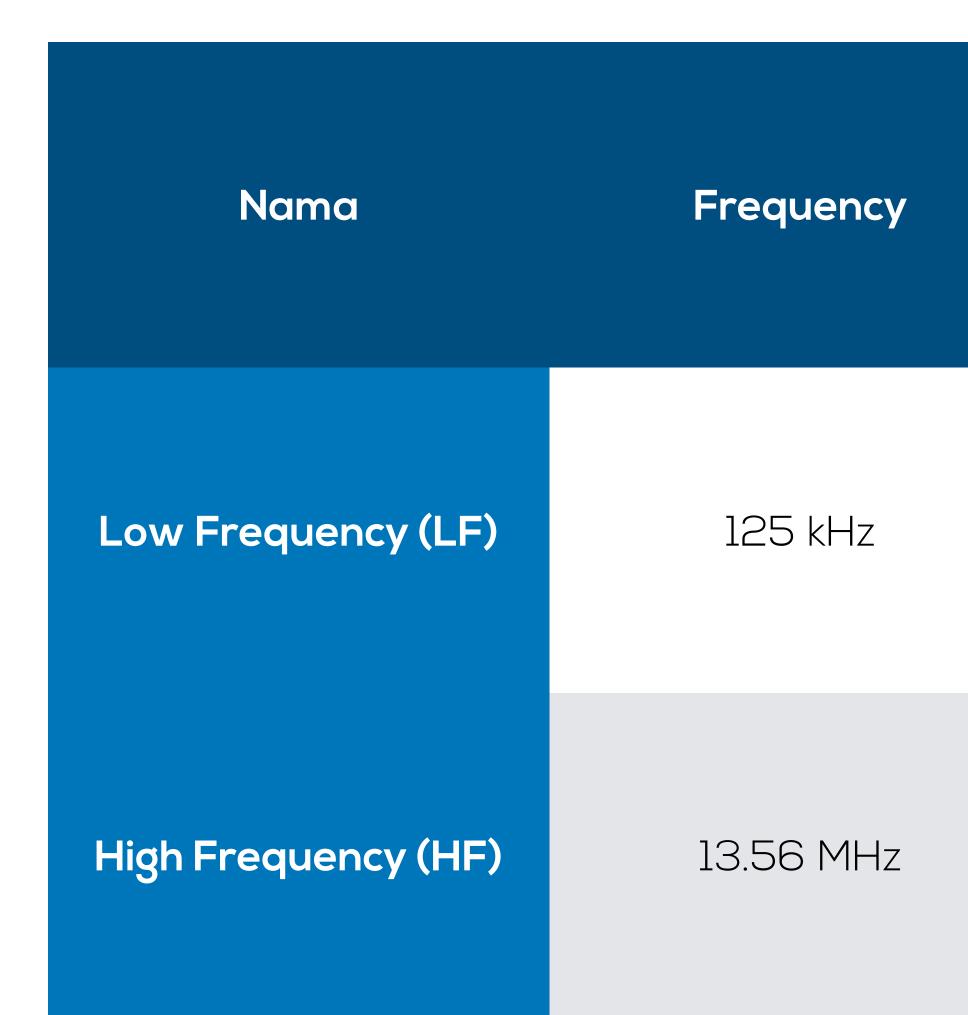
> Tanda Tangan Pemegang Signature of Bearer

Peringatan

-0-


Warning

Paspor ini dilengkapi dengan cip elektronik yang sensitif. Paspor ini tidak boleh ditekuk, dilipat, dilubangi, dicelupkan dalam cairan, atau dibanting. Paspor ini juga tidak boleh ditaruh di tempat yang sangat panas atau lembab, di tempat yang langsung terkena cahaya matahari, di sekitar area elektromagnetik seperti televisi, microwave, atau terkena bahan-bahan kimia.


This passport contains a sensitive electronic chip. The passport, must not be bent, folded, perforated, immersed in liquid or dropped. Neither should it be subjected to extreme heat or humidity, placed in direct sunlight or near electromagnetic field such as television sets or microwave ovens, or come into contact with chemical substances.

It comes in different flavors

Technology Card Guide HIDGlobal, 20 May 2015

Reach

ISO Terminology

<45cm

Proximity Cards (ISO 7810)

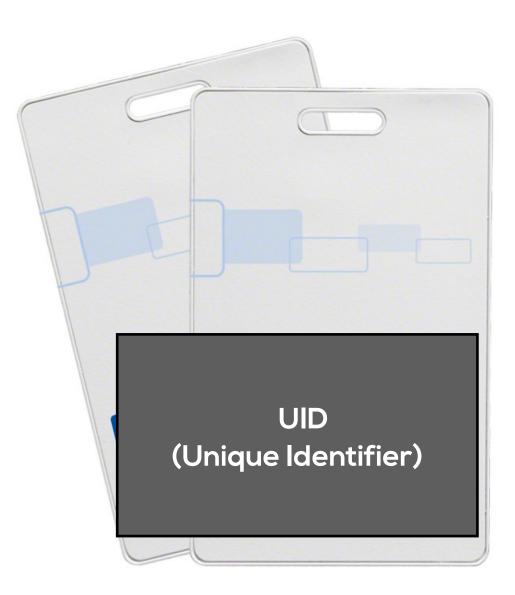
45-100cm

Contactless Cards (ISO 24727)

But we are focusing on one

Smart Contactless Card

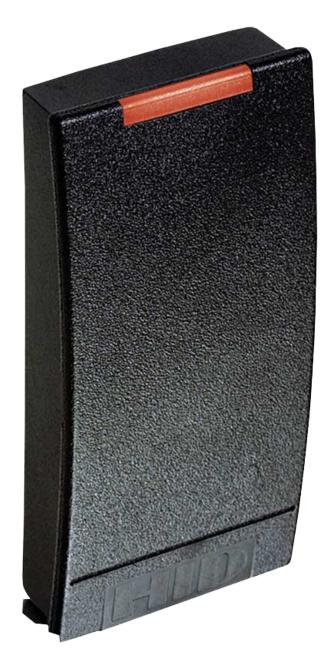
HID Proximity Brochure HIDGlobal, 02 Oct 2018


iCLASS Product Brochure HIDGlobal, 2007

 Uses 13.56 MHz RFID Frequencies Encrypted using DES/Triple-DES (Digital Encryption Standard) • the CSN is protected

Before iCLASS there was ProxCard that transmits it's UID in plaintext

Proximity Card (ISO 7810)



*this is **not a real UID**

iCLASS Product Brochure HIDGlobal, 2007

Reader

6d 61 69 6b 20 73 61 79 61 6e 67 20 73 61 6e 73 61 6e

Cryptography Engineering ISBN 978-04704744242 Bruce Scheneier, 2010

Encryption

HID iCLASS uses the HashO algorithm to create all signatures

Cryptography Engineering ISBN 978-04704744242 Bruce Scheneier, 2010

Using the signature in the reader, the device can iterate unique keys for every card

5176 0400 0002 5018

Using the We could attempt to bruteforce the combination but this method requires significant computing power if done without prior information gathering and supplemental information in the reader

[00:00:00] 8 keys tested

Current passphrase: NEUUBHg8098065054340

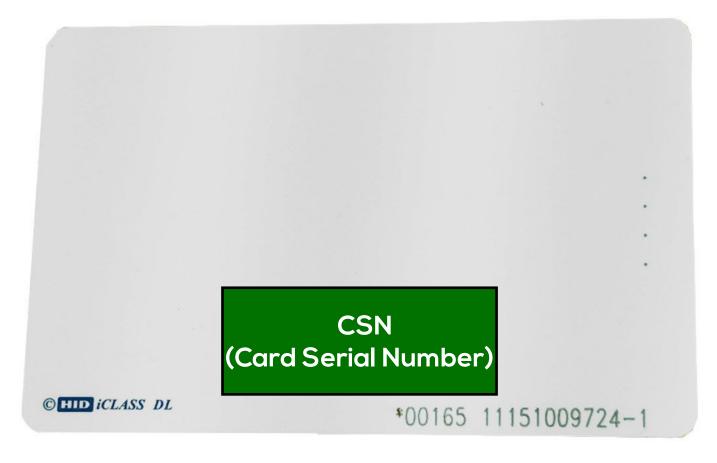
Master key	: 5% 89	22 23														
Transient key	3,6	88 92 92 93 93	UN FR	TH TH	22 3X	00 00	ee ZB	10 65	69	88 95	#G 20	80 83	00 59	UR QS	98 20	9¥ 06

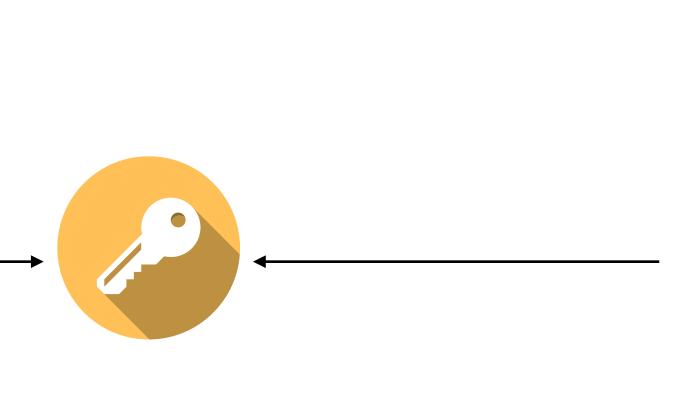
It also has a unique quirk

Smart Contactless Card

Reader checks if the key in the card and the key in the reader are the same

iCLASS Product Brochure HIDGlobal, 2007


Reader


If the keys are the same

Smart Contactless Card

iCLASS Product Brochure HIDGlobal, 2007

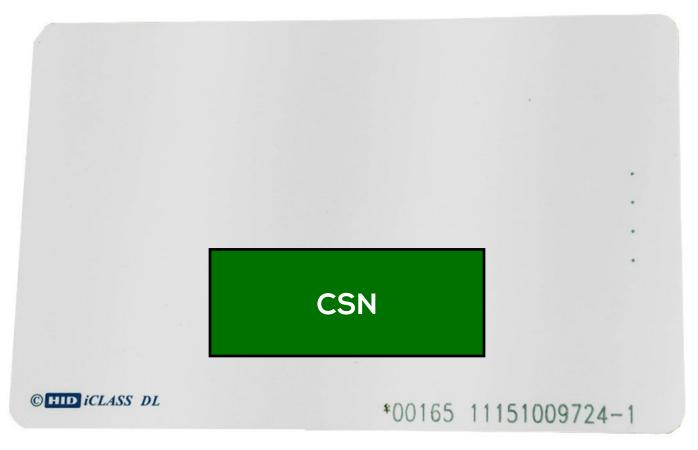
Reader

The CSN is transmitted and authenticated

Smart Contactless Card

iCLASS Product Brochure HIDGlobal, 2007

Reader


(Card Serial Number)

So there are layers to this...

Level	Layers of Security
LvIO	CSN
Lvl1	phdr + rf signal (IDENTIFY)
Lvl1	DES Signature (Q) #N Data
Lvl2	INCrypt32 #0 data
Lvl2	Hash0 #0 data
LvI3	TDES Key (R,S) #N data

Smart Contactless Card

So we just have to

Smart Contactless Card

1. Extract the CSN 2. Extract the TDES Key 3. Duplicate the card

Smart Contactless Card

First Step Extracting the CSN

On the left is a device called an OMNIKEY, it's what HID calls a Secure Access Module that can read and write the contents of an HID iCLASS card. This is commonly used by technicians for the initial programming of the card.

 id, c_C n_R, a_R a_C

OMNIKEY 5321 Product Brochure HIDGlobal, 2007

Smart Proximity Contactless Card

Reader/Writer Multikey

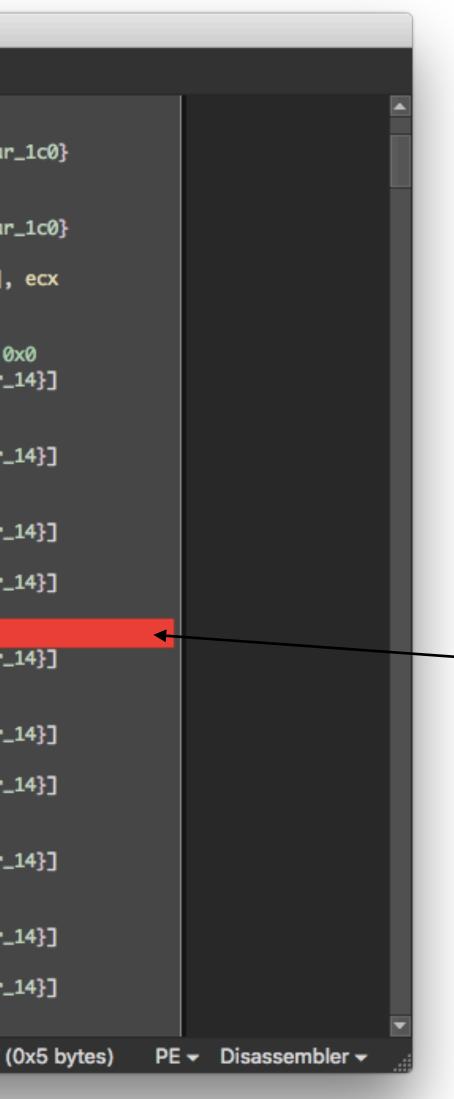
OMNIKEY 5321 Product Brochure HIDGlobal, 2007

• It can do read-write operations It's contents are encrypted with TDES too • The USB connection to a PC is secured using somesort of Secure Mode

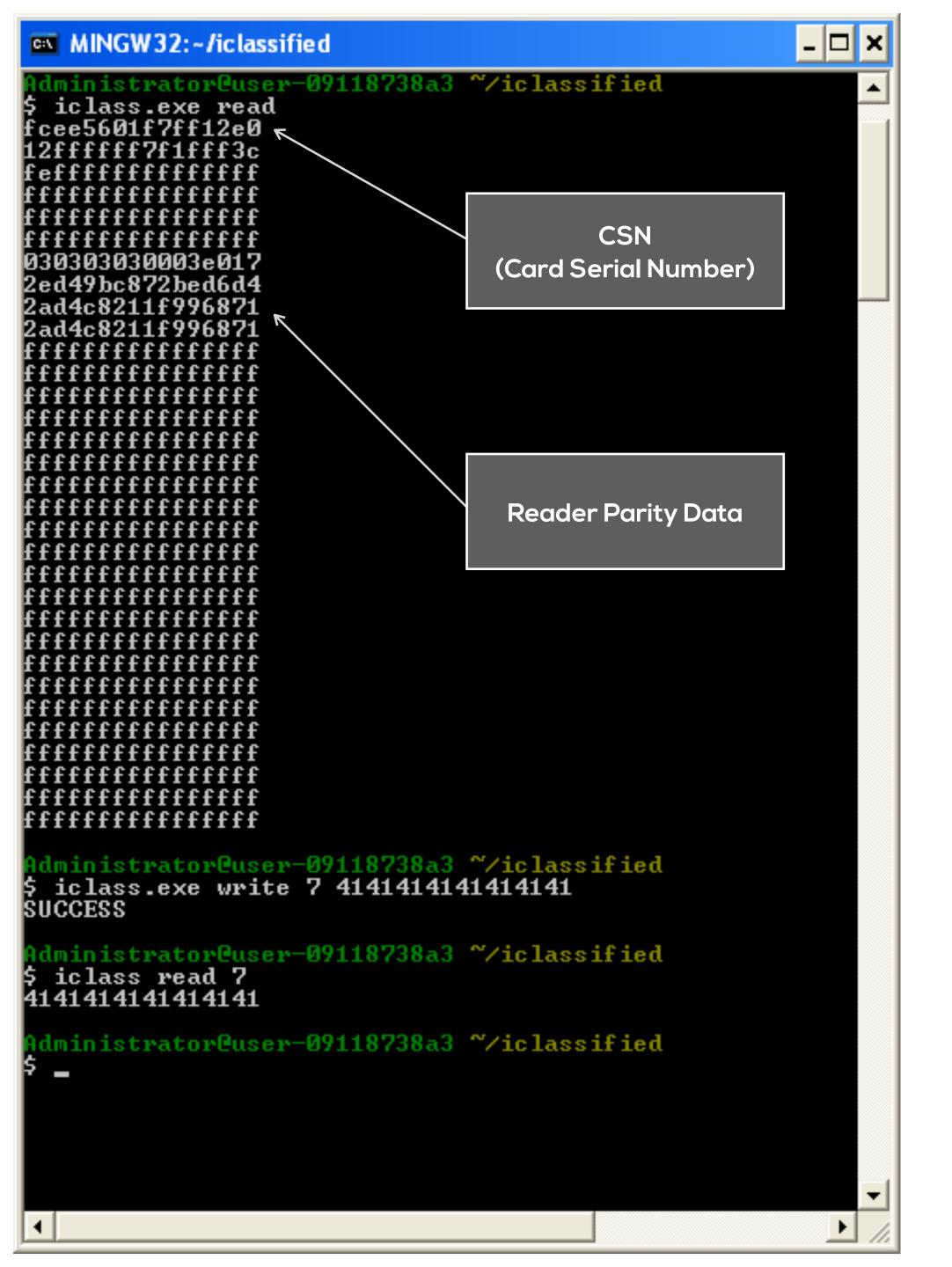
Reader/Writer Multikey

Reverse Engineering HID iCLASS Master Keys Kevin Chung (NYU), 12 Juni 2016

In the Secure Mode, there is a security flaw in an old driver that accidentally gives the **user root** access of the device



🖲 😑 🔵		a execut	able.94	8.exe — Binary Ninja
sub_4010b9	▲ in+32 + s	ub_4075d0()		
sub_4010ff				
sub_401109		00407510	push	edı
sub_401127		004075f1	push	ecx
sub_401159		004075f2	lea	edi, [ebp+0xfffffe44] {va
sub_401163		004075f8	mov	ecx, 0x6c
sub_401172		004075fd	mo∨	eax, 0xccccccc
_start		00407602	rep st	cosd dword es:[edi], eax {va
sub_4075d0		00407604	pop	ecx
VinSCard!SCardListReade		00407605	mov	dword [ebp-0x10 {var_14}]
VinSCard!SCardEstablish		00407608	lea	ecx, [ebp-0x14] {var_18}
VinSCard!SCardReleaseCo		0040760b	call	sub_4dcf67
VinSCard!SCardDisconnect		00407610		dword [ebp-0x4 {var_8}],
VinSCard!SCardTransmit		00407617		ecx, dword [ebp-0x10 {var
SCARDSYN!Ordinal110		0040761a		sub_4010ff
sub_40a9b0		0040761f		0x5c8194 {"80A60000"}
sub_40c0f0		00407624	mov	ecx, dword [ebp-0x10 {var
sub_40c6c0		00407627		ecx, 0x3c8
sub_40c6e0		0040762d	call	sub_4893ed
sub_40c770		00407632		ecx, dword [ebp-0x10 {var
sub_40c790		00407635	call	sub_401055
sub_40c810		0040763a		
sub_40c830				ecx, dword [ebp-0x10 {var
sub_40c8d0			call	sub_4010ff
sub_40c910 sub_40c950		00407642		0x5c8174 {"808200F008
sub_40c960		00407647		ecx, dword [ebp-0x10 {var
sub_426130		0040764a		ecx, 0x3c8
sub_4269a0		00407650		sub_4893ed
sub_426a30	T	00407655		ecx, dword [ebp-0x10 {var
		00407658		sub_401055
Xrefs		0040765d		ecx, dword [ebp-0x10 {var
	-	00407660		sub_4010ff
		00407665		0x5c8168 {"808800F0"}
		0040766a	mo∨	ecx, dword [ebp-0x10 {var
		0040766d	add	ecx, 0x3c8
		00407673	call	sub_4893ed
		00407678	mo∨	ecx, dword [ebp-0x10 {var
		0040767b	call	sub_401055
		00407680	mo∨	ecx, dword [ebp-0x10 {var
		00407683	call	sub_4010ff
		Options -		lection: 0x407642 to 0x407647


Reverse Engineering HID iCLASS Master Keys Kevin Chung (NYU), 12 Juni 2016

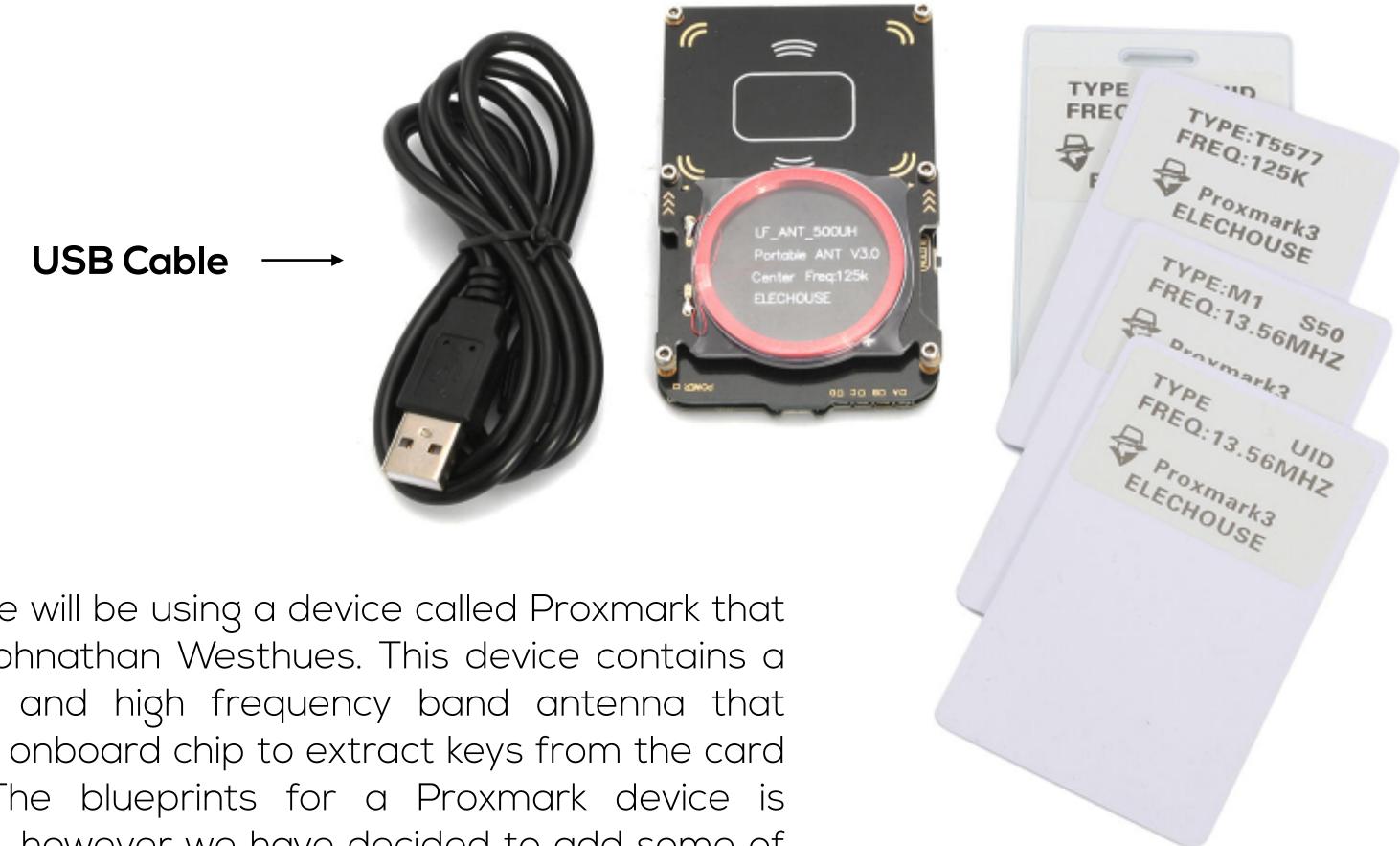
Master Authentication Key

By disassembling the original OMNIKEY firmware, we can find the default master authentication key that is contained in every single OMNIKEY device

Reverse Engineering HID iCLASS Master Keys Kevin Chung (NYU), 12 Juni 2016

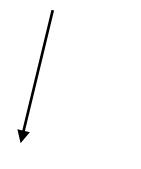
Reader/Writer Multikey

We can use that masterkey to create a program that can read the card and acquire the CSN from the program header, without the use of HID's proprietary card decoding software


Time to go deeper...

Level	Levels of Security
L IO	CSN
Lvi1	phdr + rf signal (IDENTIFY)
Lvl1	DES Signature (Q) #N Data
Lvl2	INCrypt32 #0 data
Lvl2	Hash0 #0 data
LvI3	TDES Key (R,S) #N data

Smart Contactless Card



Second Step Extract the TDES Key

For this step we will be using a device called Proxmark that was built by Johnathan Westhues. This device contains a low frequency and high frequency band antenna that connects to an onboard chip to extract keys from the card and reader. The blueprints for a Proxmark device is available online, however we have decided to add some of our own modifications such as lowering the memory capacity to lower the production cost and speed up production.

Scanner

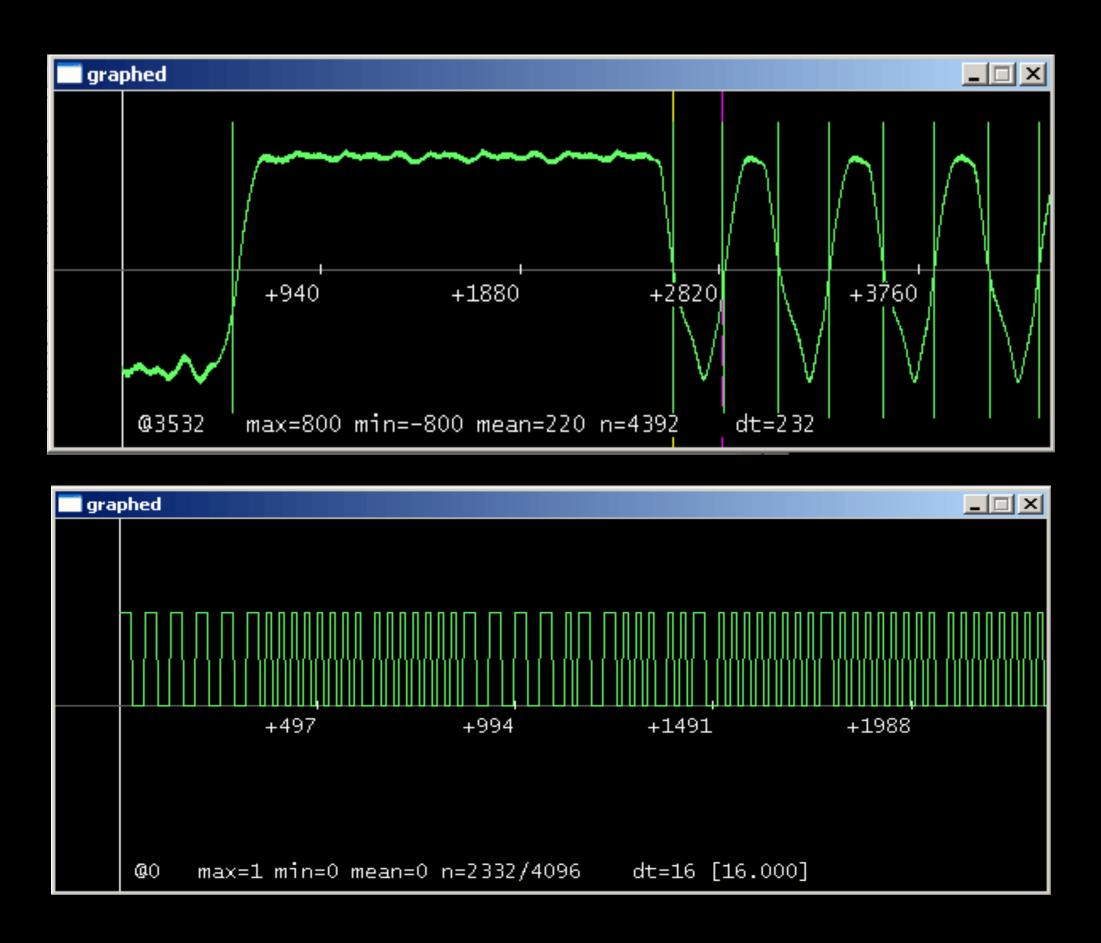
Rewriteable Test Cards

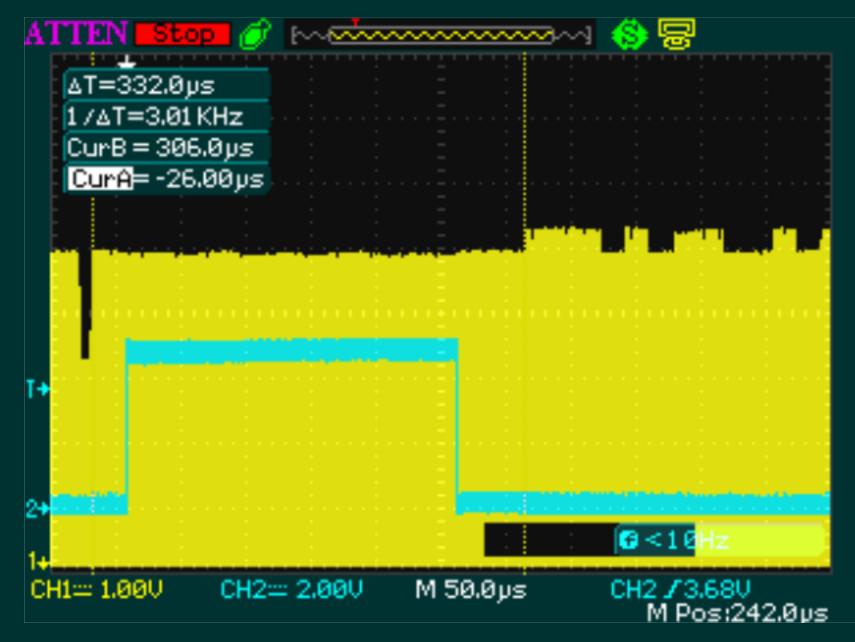
In this step we use the Proxmark device to fool the reader into thinking that the device is a genuine HID card. This is done to take the frequency response that is created by the reader.

Reader

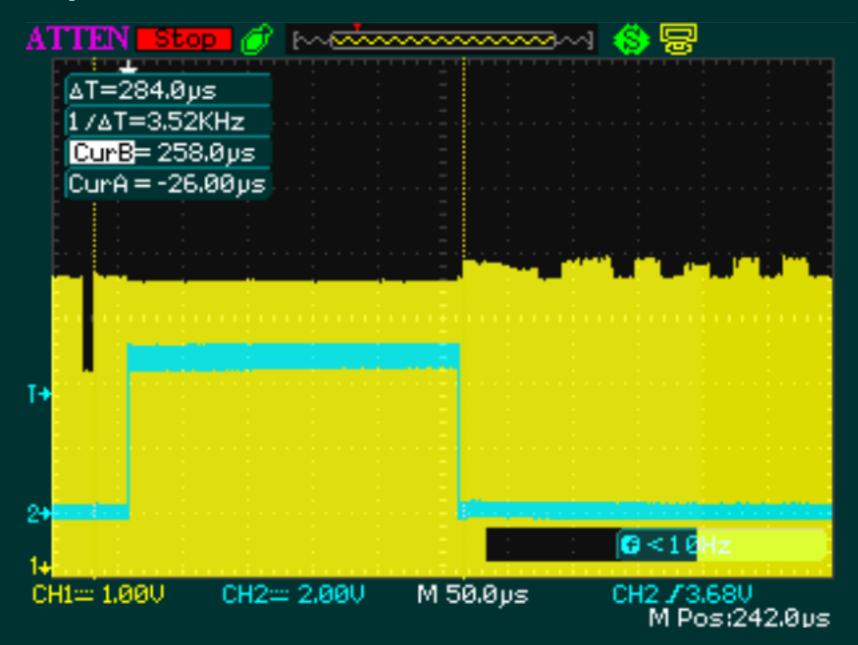
IDENTIFY

iCLASS Key Extraction Jonathan Westhues, 2010


Proxmark 3


Key DES

We need to match the proxmark radio frequency with the frequency that is expected of a genuine HID iCLASS card



Response of an **"IDENTIFY"** signal from a genuine reader

Spectogram results from Martin Holst Swende

Response of an **"IDENTIFY"** thats **replicated**

Next on the chopping block

Level	Levels of Security
L IO	CSN
	phdr + rf signal (IDENTIFY)
Lvl2	DES Signature (Q) #N Data
Lvl2	INCrypt32 #0 data
Lvl3	Hash0 #0 data
LvI3	TDES Key (R,S) #N data

We will attempt to break the implementation of the algorithm used by HID. In the iCLASS system there is a formula to calculate the keys and in the keys there are several parameters.

Publicly shared :

P, *u*, *b*, *G* (parameters)

Q = Public keye = Hash of data*R* = Signature by scalable multiplication S = Signature by normal numbers

Privately stored :

M = random numberKd = debit key

Exposing iCLASS Key Diversification Radboud University, 2010

Level	Levels of Security
LvIO	CSN
Lvi1	phdr + rf signal (IDENTIFY)
Lvl1	DES Signature (R,S) #N Data
Lvl2	INCrypt32 #0 data
Lvl2	Hash0 #0 data
Lvl3	TDES Key (Kd) #N data

Signature is a pair of variables *R*, *S* thats programmed as :

$$R = (mG)_x$$

$$S = \frac{e + kR}{m}.$$

The *m* varibale needs to be random for the encryption system to work. If a *signature* uses the same *m* value, a *user* can calculate *k*.

Exposing iCLASS Key Diversification Radboud University, 2010

There are two *S* Variables (one for the reader and the other for the card) so there are *S*¹ and *S*²

$$R = (mG)_x \qquad R = (mG)_x$$
$$S_1 = \frac{e_1 + kR}{m} \qquad S_2 = \frac{e_2 + kR}{m}$$

Exposing iCLASS Key Diversification Radboud University, 2010

$$R = (mG)_x \qquad R = (mG)_x$$
$$S_1 = \frac{e_1 + kR}{m} \qquad S_2 = \frac{e_2 + kR}{m}$$

If m has the same value in the two signatures, then Rwill be the same

$$S_1 - S_2 = \frac{e_1 - e_2}{m}$$
$$m = \frac{e_1 - e_2}{S_1 - S_2}$$
$$k = \frac{mS_i - e_i}{R} \left[= \frac{e_1 S_2 - e_2 S_1}{R(S_1 - S_2)} \right]$$

Exposing iCLASS Key Diversification Radboud University, 2010

٠

With this we not only took the DES signature but we also obtained the TDES key which is the last level of security in the iCLASS ecosystem.

Level	Levels of Security
L IO	CSN
	phdr + rf signal (IDENTIFY)
1/2	DES Signature (Q) #N Data
1 2	INCrypt32 #0 data
L 3	Hash0 #0 data
I (3	TDES Key (R,S) #N data

C:\Windows\System32\cmd.exe

c:\Proxmark\win32>

争

Smart Contactless Card

Step 3 Replication

pm3 --> hf tune Measuring antenna characteristics, please wait... #db# DownloadFPGA(len: 42096)

• • • • # LF antenna: 35.20 V @ 125.00 kHz # LF antenna: 33.83 V @ 135.00 kHz # LF optimal: 35.71 V @ 127.66 kHz # HF antenna: 30.77 V @ 13.56 MHz Displaying LF tuning graph, Divisor 89 is 134khz, 95 is 125khz

pm3 --> hf iclass managekeys n 0 k aea684a6dab23278 #db# SUCCESS #db# going into sicko mode, 8 CSNS sent

pm3 --> hf iclass eload iclass_tagdump-aa16230f8ff12f1.bin Sent 42096 bytes of data to device emulator memory

pm3 --> hf iclass sim 0 e53d1d0efeff12e0 #db# Simulating CSN e53d1d0efeff12e0

Authors Suppressed Due to Excessive Length

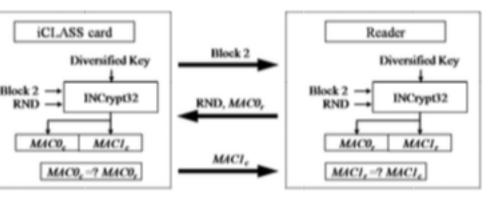


Fig. 1. Authentication protocol

te MAC. At this point, the card can compute an 8-byte MAC in the ay. If MAC0_r is correct, the card will answer the other 4-byte signature c) that enables the reader to authenticate the card. Therefore, the auation protocol needs to perform INCrypt32 with 12-byte input and 8-byte data.

Protocol If the authentication protocol succeeds, the reader is able to ta blocks without an additional authentication procedure. However, to a 8-byte data in a data block, the reader needs to perform INCrypt32 me. The write protocol is described in Fig. 2.

iCLASS	card	
101.1 100		

Re	ader	

Ir	Circuit Serial Prog	ramming (ICSP) Command
ICSP Data/	18F452 PIC	Comment
PIC Instr.	Assembly Code	
0x0E00	MOVIN, 0	Set Upper byte of Inde
0x6 EEA	MOVWF, FSR0H	
0x0E00	MOVIN, 0	Set Lower byte of Inde
0x6 EE9	MOVWF, FSR0L	
0x50EE	MOVF, POSTINCO	Read File Register & I
0x6EF5	MOVWF, TABLAT	Move Reg data to ICSP
Reg Data	N/A	Send data byte read to

Capture Circuit Implementation

are required to extract the iClass register information is fail cuit is comprised of a generic 8-bit microcontroller which an RS-232 transceiver, a couple of push buttons and a coup ICSP interface and a PC serial COM port. The microcontrol the ICSP interface. The serial EEPROM is used to store the o d across the ICSP interface. The RS-232 transceiver is used mp the captured data at a later time. The RS-232 transceiv 9Vdc (min) needed to force the PIC ICSP interface into a d

inload, the capture circuit receives its operating power dire n the readers ICSP connector. In addition, an onboard 5Vdc 9Vdc battery which is used to power the circuit during the a PC.

iCLASS Compatibility Chart

	Card Compatibility	R10, R30, R40, RK40	RW300, RW400, RWK400, RWKL550, RWKB575	
	Card CSN Read	2K & 16K	2K & 16K	Infi Phi
ISO 15693	Card Read	2K & 16K	2K & 16K	
	Card Write	NONE	2K & 16K	
	Card CSN Read	Philips MIFARE, UltraLight, DESFire™	Philips MIFARE, UltraLight, DESFire [™]	
ISO 14443A	Card Read	NONE	NONE	
	Card Write	NONE	NONE	

Smart Card Door Access Employing Mutual Authentication

300

Credential and reader establish they are part of a trusted population (not forged, cloned, or spoofed)

If they establish trust, the process continues as normal.

NXP Semiconductors

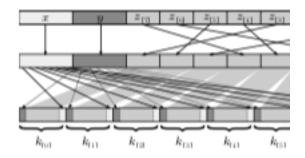


Fig. 2.5. Schematic representation of the

Remark 3. The DES implementation used in iClas NIST standard [12] in the way of representing keys. DES key is of the form $(k_0 \dots k_6 p_0, k_7 \dots k_{13} p_1, \dots, k_{13} p_{13})$ are the actual key bits and $p_0 \dots p_7$ are parity bits. I is of the form $\langle k_0 \dots k_{55} p_0 \dots p_7 \rangle$.

The following sequence of definitions describe the fu function is included here for the sake of complete construction are not necessary to understand the att and Section 3.3.

Definition 8. Let the function check: $(\mathbb{F}_2^6)^8 \to (\mathbb{F}_2^6)^8$ $check(z_{[0]}...z_{[7]}) = ck(3, 2, z_{[0]}...z_{[3]}) \cdot c$ where $ck: \mathbb{N} \times \mathbb{N} \times (\mathbb{F}_2^6)^4 \to (\mathbb{F}_2^6)^4$ is defined as

 $ck(1, -1, z_{100}, \dots, z_{101}) = z_{101}$

 $z_{[0]} . . . z_{[3]}$ thank you $z_{[0]} \dots z_{[i]} \leftarrow$ $_{0]} \dots z_{[3]}),$ $permute(p_0 \dots p_n, z, l, r) = \begin{cases} (z_{[l]} + 1) \cdot permute(p_0 \dots p_{l-1}) \\ z_{[r]} \cdot permute(p_0 \dots p_{l-1}) \end{cases}$ **Definition 10.** Define the bitstring $\pi \in (\mathbb{F}_2^8)^{35}$ in h $\pi = 0 \times 0 F171B1D1E272B2D2E33353$

4D4E535556595A5C636566696.

Each byte

How a Credential is 'Read'

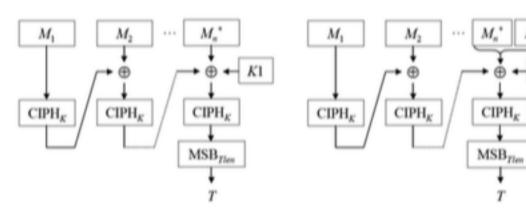
comes fr	om a moo	iulo operat	tion. Here
odulo 62	, which is	111110	in binary.
x78:			

 $(z_6 \mod 62) + 2 = .111110.$ $(z_0' \mod 62) + 2 = .000010. \oplus$ $01111000 = 0 \times 78$

utput variations invoked by bitflips in ion $z_6 + 1 = z_7$. The corresponding k_1^{\oplus} $g_{k_{1}[1,6]} = 1$ when the relation holds and (2) + 2 when it does not hold. Example

(od 62) + 2	-	.100110.
$mod 62) + 1 = n_7)$	-	.000001. ⊕
		$01001110 = 0 \times 4e$

tion for $k_{1[1..6]}$ is:


$$(z_6 \mod 62) + 1 = (z_7 \mod 63);$$

1 62) + 2, otherwise.

2 Key Diversification

2.1 Construction

For diversification, the recommended way by NXP is to use the CMAC construction of an amount of data using a master key. See [CMAC].

The pre-requisite is that there is enough input "diversification data" in order to make it a MAC. A MAC is used rather than encryption to make it a one-way function.

Figure 1. CMAC construction (2 cases: left without padding, right with padding)

Fig 1 illustrates th cases.

According to [CM is modified before (denoted K1 or K) the choice of whic contains padding

These computatic context of the key because the pado computations can key to be diversifi signals to the CM

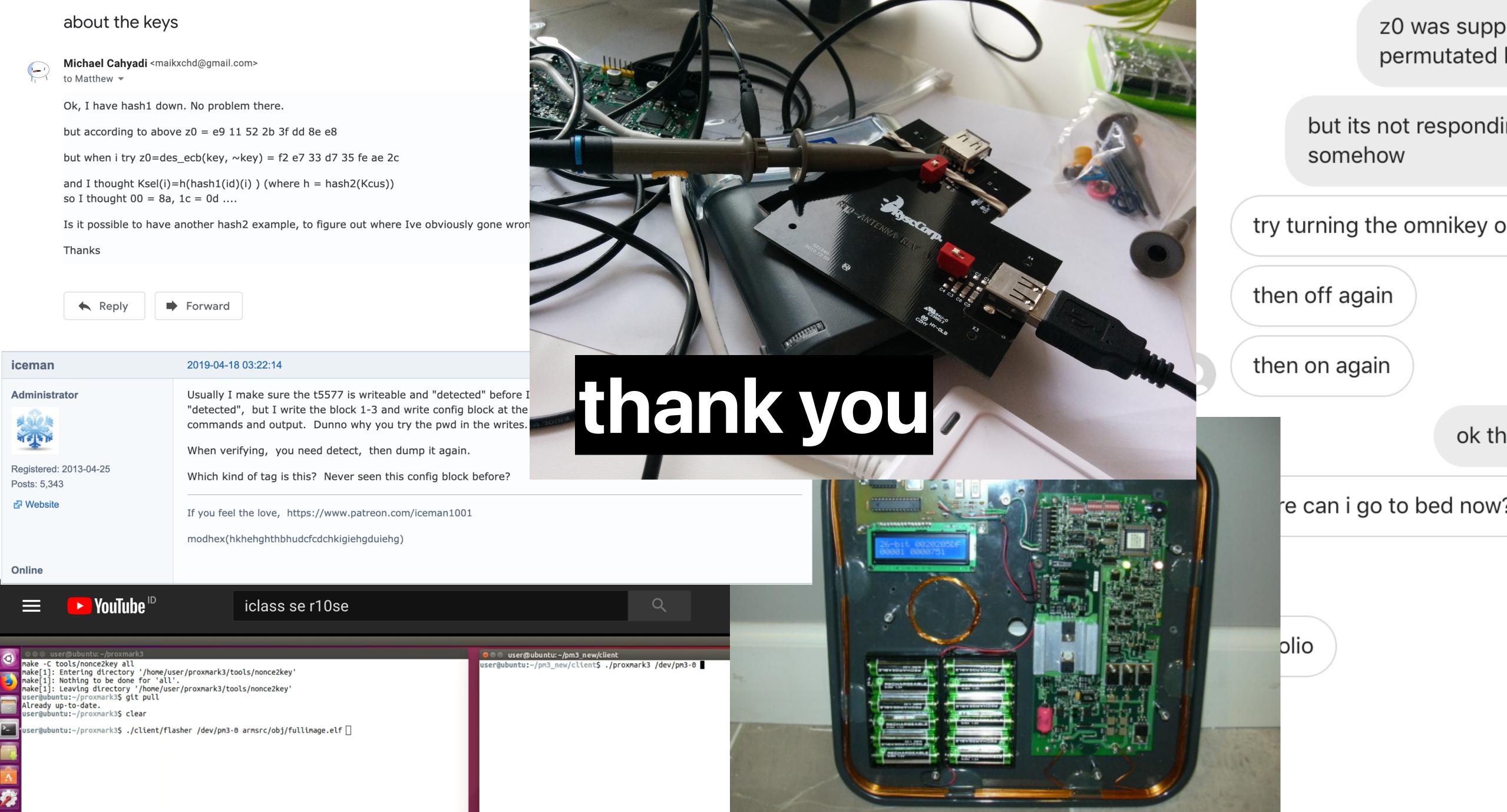
If the keye are to

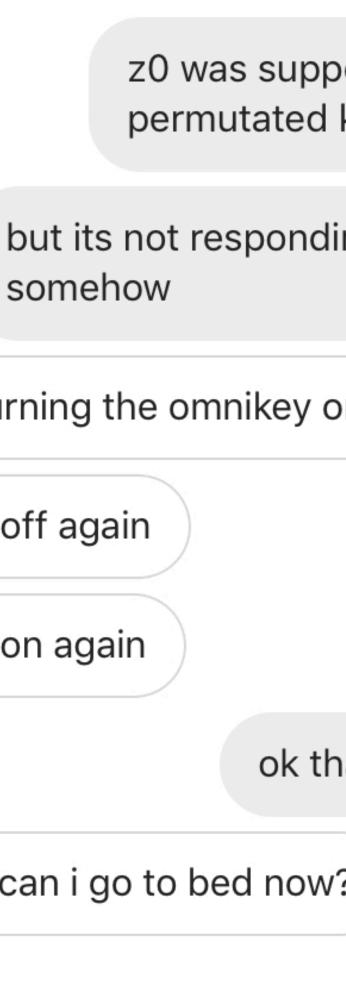
THE DARK SIDE OF SECURIT and Cloning MiFare Classic Rail and Buildi

bi			
- ⊕	$+ k_0k_1$		
(4	8 fc000		
4	9 00fc0	Keywords:	Access control, RFID, co
5	20000 O		secrets, secure hardware o
. 5	1 00000		backdoors, critical applic
) 5:	2 00000		ouekaoors, entieur appire
5	3 00000	Abstract	Million Chaminin da
5	4 00000	Abstract:	MiFare Classic is the mos
5	5 00000		wide. At Esorics 2008 E
(5	6 7£7£7		little as 0.1 seconds if the
5	7 00007		We discovered that a Mil
5	8 7f7e7		the attacker only needs to
. 5	9 7f7e7		of identity through pass c
×) 6	0 00007		sitting next to the victim
6	1 7f7e7		also (independently from
6	2 7f7e7		queries to the card and do
6	3 7f7e7		or clones of MiFare Class
	0.00		The main security vulnera
Figui	re 9: OR :		phy, RFID protocols and
$\pi = 1$			
	, 3567012		economy is vulnerable to
34670125	, 0135246		oper can intentionally (or
	1 1 4 1 4 4 4 4		control fighter states in additional control

Nicolas T. Courtoi University College London, Computer Science, Gower

> ontactless smart cards, MiFare Cla devices, reverse-engineering, elec cation development management,


> st popular contactless smart card Dutch researchers showed that th e attacker can access or eavesdrop iFare classic card can be cloned i o be in the proximity of the card fo cloning feasible at any moment a on a train or on a plane is now b us) discovered this vulnerability loes not require any precomputati ssic are even weaker, and can be c rability that we need to address w software vulnerabilities. It is a s sophisticated forms of electronic or not), but quite easily in fact, co


-	
-т)	
-1	

iceman	2019-04-18 03:22:14
Administrator	Usually I make sure the t5577 is writeable and "detected" before " "detected", but I write the block 1-3 and write config block at the commands and output. Dunno why you try the pwd in the writes. When verifying, you need detect, then dump it again.
Registered: 2013-04-25 Posts: 5,343	Which kind of tag is this? Never seen this config block before?
♂ Website	If you feel the love, https://www.patreon.com/iceman1001
	modhex(hkhehghthbhudcfcdchkigiehgduiehg)
Online	

special thanks for

Jonathan Westhues (Oregon, USA)
Provided blueprints for the Proxmark 3 device

- Flavio D. Garcia from Radboud University Nijmegen (Nijmegen, Netherlands) Provided the key diversification function for *HID iCLASS* cards

- Christian Herman from IceSQL AB (Gotenburg, Sweden) Created a special firmware for the OMNIKEY and documented the schematics of the iCLASS reader

- ELECHOUSE (Shenzen, China) For printing the Proxmark 3 Device

- Kevin Chung dari New York University (New York, USA) Developed additional drivers for the OMNIKEY 5321 model and reverse engineered the *HID iCLASS* masterkeys

Fanny Soedjahdjo dari Philip Pocock Catholic Secondary School (Ontario, Canada)
Provided additional material translation from english to indonesian
(this presentation was originally created in Indonesian)